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Abstract
Sequential recommendation (SR) aims to capture users’ dynamic in-
terests and sequential patterns based on their historical interactions.
Recently, the powerful capabilities of large language models (LLMs)
have driven their adoption in SR. However, we identify two critical
challenges in existing LLM-based SR methods: 1) embedding col-
lapse when incorporating pre-trained collaborative embeddings and
2) catastrophic forgetting of quantized embeddings when utilizing
semantic IDs. These issues dampen the model scalability and lead
to suboptimal recommendation performance. Therefore, based on
LLMs like Llama3-8B-instruct, we introduce a novel SR framework
named MME-SID, which integrates multimodal embeddings and
quantized embeddings to mitigate embedding collapse. Addition-
ally, we propose a Multimodal Residual Quantized Variational Au-
toencoder (MM-RQ-VAE) with maximum mean discrepancy as the
reconstruction loss and contrastive learning for alignment, which
effectively preserve intra-modal distance information and capture
inter-modal correlations, respectively. To further alleviate cata-
strophic forgetting, we initialize the model with the trained multi-
modal code embeddings. Finally, we fine-tune the LLM efficiently
using LoRA in a multimodal frequency-aware fusion manner. Ex-
tensive experiments on three public datasets validate the superior
performance of MME-SID thanks to its capability to mitigate em-
bedding collapse and catastrophic forgetting. The implementation
code and datasets are publicly available for reproduction1.
1https://github.com/Applied-Machine-Learning-Lab/MME-SID
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1 Introduction
In recent decades, the rapid development of web applications, such
as short video platforms and e-commerce services, has significantly
increased the importance of recommender systems in driving profits
and enhancing user engagement [46]. In the recommendation com-
munity, sequential recommendation (SR) aims to model sequential
patterns and capture users’ dynamic interests by leveraging their
historical interactions [5]. Traditional SR methods primarily rely
on collaborative modality, i.e., using only item IDs. However, these
approaches are particularly vulnerable to the cold-start problem,
which arises with new users, items, and business scenarios [47, 50].

Recently, large language models (LLMs) have demonstrated re-
markable capabilities in comprehending semantic data in natural
language format [1]. Consequently, an increasing number of stud-
ies have explored the use of LLMs for sequential recommendation
(LLM4SR). For instance, some works like TALLRec [2] formulates
SR as a text generation task and applies instruction tuning on LLMs.
Meanwhile, to enable LLMs to perform generative recommendation
or retrieval, a parallel line of research [35, 40, 66] introduces seman-
tic IDs to represent items. Specifically, these methods learn to trans-
form the item embedding into semantic IDs, which are then treated
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as new generative LLM tokens. For example, as shown in Fig. 2, the
textual embedding of item is encoded into a sequence of semantic
IDs or codes as (1, 2). This scheme is referred to as quantization
and Residual Quantized Variational Autoencoder (RQ-VAE) [7] is a
representative quantization model which will be detailed in Sec. 2.2.

However, we identify two key challenges in existing LLM4SR [19,
20, 41] models which lead to suboptimal performance as follows:
• Embedding Collapse. Also known as dimensional collapse [4],
this phenomenon indicates the embedding matrix is nearly low-
rank with mostly significantly small singular values. In that cir-
cumstance, the embeddingmatrix only occupies a low-dimensional
subspace, leading to inefficient use of model capacity and lim-
ited scalability [32]. Existing works [4, 32] found that in tradi-
tional recommender system this issue is caused by the interac-
tion between low-dimensional embeddings and possibly high-
dimensional embeddings of other feature fields. By contrast, we
also observe embedding collapse in LLM4SR. Sec. 5.3 shows over
98% dimensions of embedding matrix collapse in experiment.
Sec. 3.1 shows the cause is simply mapping low-dimensional col-
laborative embeddings from pre-trained recommendation models
into high-dimensional LLM representation space.

• Catastrophic Forgetting. It usually refers to the lost of previ-
ously learned knowledge when incorporating information rele-
vant to the current task. Typically, existing studies [35, 40, 43, 49,
66] simply discard the learned code embeddings after training
quantization model. They only maintain the assigned semantic
IDs and train their embeddings from scratch on the downstream
retrieval or recommendation task. Nonetheless, even if the hier-
archical structure of semantic IDs is preserved, vast majority of
information in the original code embeddings (e.g., over 94% of
the partial order information of distance as shown in Sec. 3.2) is
lost and cannot be retained, indicating catastrophic forgetting.
Moreover, we highlight a fundamental dilemma that simultane-

ously addressing embedding collapse and catastrophic forgetting
poses a significant challenge in LLM4SR: (i) Relying solely on pre-
trained low-dimensional collaborative embeddings inevitably leads
to collapse. Though one can increase the embedding dimension of
conventional SR model, blindly enlarging it can negatively impact
model performance [4]. Meanwhile, the common solutions on tack-
ling embedding collapse in traditional recommendation model like
multi-embedding [15, 39] all fail in LLM-based recommendation
framework, which will be shown in Sec. 5. (ii) Although randomly
initialized embedding matrices are less prone to collapse [37, 38],
training a new embedding table incurs high computational costs,
particularly in industrial-scale SR systems that involve billions of
users and items [3, 8, 14, 21, 23, 45, 60, 61, 64]. Moreover, these newly
trained embeddings fail to retain previously acquired knowledge.

To address these challenges, we propose MME-SID, a novel
framework that enhances large language models for sequential
recommendation with multimodal embeddings and semantic IDs.
Specifically, we introduce a Multimodal Residual Quantized Varia-
tional Autoencoder (MM-RQ-VAE) to generatemultimodal semantic
IDs. Notably, to better preserve distance information and alleviating
forgetting, it incorporates a characteristic-kernel-based maximum
mean discrepancy as the reconstruction loss. Besides, a contrastive
learning objective is adopted to capture inter-modal correlations.
On the one hand, to alleviate embedding collapse, we propose to

simultaneously leverage the original embedding and the embedding
of semantic IDs in collaborative, textual, and visual modalities to
obtain an informative multimodal embedding for each item. On
the other hand, to mitigate catastrophic forgetting, we initialize
the embeddings of multimodal semantic IDs using the trained code
embeddings from MM-RQ-VAE. Finally, we fine-tune the LLM in
a multimodal frequency-aware and efficient manner using LoRA.
We will comprehensively analyze the advantage of MME-SID in
Sec. 4.4 to justify its advantage and profound impact in potential.

The key contributions of this paper are summarized as follows:
• To the best of our knowledge, it is the first work to identify and
systematically address the embedding collapse and catastrophic
forgetting issue in large language model for recommendation.

• We provide innovative perspectives on: 1) HOW multimodal
information contributes to reducing collapse and improving rec-
ommendation performance, thus truly unleashing the potential
of LLM for recommendation. 2) HOW to better preserve the dis-
tance information in quantized embeddings tomitigate forgetting.
3) WHAT is a better way to use semantic IDs.

• We conduct extensive experiments on three public datasets of
Amazon, demonstrating the superior recommendation perfor-
mance of MME-SID and providing in-depth analyses of its ability
to address embedding collapse and catastrophic forgetting.

2 Background
In this section, we first demonstrate the problem formulation and
introduce Residual Quantized Variational Autoencoder (RQ-VAE).

2.1 Problem Formulation
In sequential recommendation, denote user set and item set asU
andI, we can obtain the behavioral item sequence {ℎ𝑢 }, target item
𝑥𝑢 , and true label 𝑦𝑢 of each user 𝑢 ∈ 𝑈 . A conventional sequential
recommender system (SRS) 𝑓𝜃 usually takes {ℎ𝑢 } as input and the
prediction result 𝑦 is obtained by multiplying its output and the
target item embedding through dot product. Finally, the binary cross
entropy (BCE) loss is usually optimized [11, 16, 27, 44, 51, 63, 65].

min
𝜃

L =
1
|U|

∑︁
𝑢∈U

BCE (𝑓𝜃 ({ℎ𝑢 }, 𝑥𝑢 ) , 𝑦𝑢 ) (1)

2.2 RQ-VAE
Residual Quantized Variational Autoencoder (RQ-VAE) [7] aims to
tokenize and generate the semantic IDs of the original embedding
in a hierarchical manner. Specifically, the original embedding 𝒔 is
encoded into an encoded into the latent semantic embedding 𝒛,
which is further quantized into the codes (or the so-called semantic
IDs) through 𝐿-level codebooks. Specifically, for each code level
𝑙 = 1, . . . , 𝐿, there is a codebook 𝐶𝑙 =

{
𝑪𝑬 𝑗

}𝑆
𝑗=1, where 𝑪𝑬 𝑗 ∈ R

𝑑

are learnable code embeddings and 𝑆 denotes the codebook size.
Furthermore, the residual quantization is formulated as

𝑆𝐼𝐷𝑙 = argmin
𝑗



𝒓𝑙−1 − 𝑪𝑬 𝑗


2

𝒓𝑙 = 𝒓𝑙−1 − 𝑪𝑬𝑆𝐼𝐷𝑙 (2)

where 𝑆𝐼𝐷𝑙 is the assigned semantic ID at the 𝑙-th level codebook,
𝒓𝑙−1 is the residual from the last level, 𝒓0 = 𝒛, and ∥ · ∥ is 𝐿2

LJ
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Figure 1: The overall framework of MME-SID.

norm. Finally, the semantic IDs are {𝑆𝐼𝐷1, . . . , 𝑆𝐼𝐷𝐿} and the quan-
tized embedding 𝒛̂ =

∑𝐿
𝑙=1 𝑪𝑬𝑆𝐼𝐷𝑙 is further decoded into 𝒔 to

reconstruct 𝑠 . Denote SG as the stop gradient operation and 𝛼 as a
hyper-parameter, the overall loss function is

L = LRecon + LRQ-VAE (3)

LRecon = ∥𝒔 − 𝒔∥2 (4)

LRQ−VAE =

𝐿∑︁
𝑙=1



SG (𝒓𝑙−1) − 𝑪𝑬𝑆𝐼𝐷𝑙


2 + 𝛼



𝒓𝑙−1 − SG
(
𝑪𝑬𝑆𝐼𝐷𝑙

)

2
(5)

3 Preliminary Analysis
In this section, we investigate the embedding collapse and cata-
strophic forgetting phenomena theoretically and empirically in
large language model for sequential recommendation (LLM4SR).

3.1 Embedding Collapse
Existing LLM4SR methods [10, 13, 59] usually extract collaborative
information from the pre-trained collaborative embedding 𝑬𝑐 by
mapping it into LLM token space. Suppose there is a matrix 𝑨 and
𝑩, then the following formula holds:

rank(𝑨 · 𝑩) ≤ min{rank(𝑨), rank(𝑩)} (6)
rank(𝑨 + 𝑩) < rank(𝑨) + rank(𝑩) (7)

Therefore, taking linear projection as a common example, we can
derive that the rank of the projected embedding satisfies:

rank(𝑾 · 𝑬𝒄 + 𝑏) < rank(𝑾 · 𝑬𝒄 ) + rank(𝑏)
≤ min {rank(𝑾 ), rank(𝑬𝒄 )} + 1
≤ rank(𝑬𝒄 ) + 1 (8)

where 𝑬𝒄 ∈ R𝑀×𝐷 is the embedding table, 𝑊 ∈ R𝐷 ′×𝐷 and
𝑏 ∈ R𝐷 ′×1 denotes the weight and bias of the linear projection.
𝐷 and 𝐷′ denotes the dimension of the original and projected em-
bedding. Consequently, since 𝑬𝒄 is usually low-rank (e.g., 64 or 128
in traditional SRS), we can find that after the transformation of

linear projection, the pre-trained low-dimensional collaborative
embedding is only mapped into a low-dimensional sub-space of the
LLM token embedding space, leading to embedding collapse.

Besides, for nonlinear mappings it is difficult to draw a uni-
fied conclusion of their impact on matrix rank through theoretical
analysis. Thus we empirically calculate the singular value of the
embeddings in different methods and analyze the results in Sec. 5.3.

3.2 Catastrophic Forgetting
We adopt Kendall’s tau [6] to measure forgetting, i.e., how much
distance information is lost or preserved. For example, consider a
user’s behavioral items are {𝑖1, 𝑖2} and the target item is 𝑖3 in the
historical interactions. A recommendation model 𝑓𝜃 first maps the
items into embedding 𝒆1, 𝒆2, and 𝒆3 and then the distance ⟨· , ·⟩
between each pair of behavioral and target item embedding is com-
puted. This results in the variable {⟨𝒆1, 𝒆2⟩, ⟨𝒆1, 𝒆3⟩}. For another
model 𝑓𝜃 ′ its distance variable is {⟨𝒆′1, 𝒆

′
2⟩, ⟨𝒆

′
1, 𝒆

′
3⟩}. Subsequently,

Kendall’s tau can be utilized to assess the concordance between the
distance variable of the two models, which is defined as

𝜏 =
#(concordant pairs) − #(disconcordant pairs)

#(pairs) (9)

where # denotes the count. Specifically, a pair of samples is deemed
concordant if the sorting order is consistent, i.e., both ⟨𝒆1, 𝒆2⟩ <

⟨𝒆1, 𝒆3⟩ and ⟨𝒆′1, 𝒆
′
2⟩ < ⟨𝒆′1, 𝒆

′
3⟩ are true, or both ⟨𝒆1, 𝒆2⟩ > ⟨𝒆1, 𝒆3⟩

and ⟨𝒆′1, 𝒆
′
2⟩ > ⟨𝒆′1, 𝒆

′
3⟩ are true.

Based on Llama3-8B-instruct model, we conduct a preliminary
experiment on Amazon Beauty dataset using semantic IDs. Specifi-
cally, an RQ-VAE model is adopted on the collaborative embedding
𝑬𝑐 obtained from a pre-trained SASRec model. It generates the
semantic IDs of 𝑬𝑐 and its quantized embedding is 𝒛̂. Moreover,
for both 𝑬𝑐 and 𝒛̂ we calculate the distance between each behav-
ioral and target item embedding adopting Euclidean distance and
it achieves 𝜏 = 0.3714. This indicates that the quantized embedding
trained preserves 37.14% of the original information (i.e., partial
order of distance) in 𝑬𝑐 . By contrast, we also randomly initialize
the code embeddings and fine-tune the LLM to conduct sequential
recommendation on the same training data as SASRec. However,
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Figure 2: The model architecture of MM-RQ-VAE, which consists of an RQ-VAE for each modality. Specifically, the black solid
arrow denotes data flow, the red dashed arrow denotes alignment, and the red dashed arrow denotes reconstruction.

the fine-tuned quantized embedding only achieves 𝜏 = 0.0550, indi-
cating that 94.50% of the previously learned information is forgotten.
Therefore, this result shows the catastrophic forgetting when ran-
domly initializing the code embeddings on the downstream tasks,
which provides preliminary validation for our conjecture.

4 Method
Wefirst provide an overview of the proposed framework, then detail
it into two stages. Finally the advantage and potential significance
of MME-SID is discussed.

4.1 Overview
To alleviate embedding collapse and catastrophic forgetting phe-
nomena, we propose to leverage both multimodal embeddings and
semantic IDs with the trained code embeddings. The overview of
MME-SID is depicted in Fig. 1, which consists of two stages: en-
coding and fine-tuning. Specifically, the encoding stage aims to
obtain the multimodal embeddings and their semantic IDs. Next,
the fine-tuning stage aims to efficiently tune the LLM to conduct
SR task in a multimodal frequency-aware manner. Additionally, the
pseudo-code is provided in Appendix. A.

4.2 Encoding Stage
In the encoding stage, first the item embeddings in the collabora-
tive, textual, and visual modality are obtained, which are further
quantized and transformed into multimodal semantic IDs by our
proposed multimodal RQ-VAE model. In the following parts, the
collaborative, textual, and visual embedding of item are denoted as
𝑬𝑐 , 𝑬𝑡 , and 𝑬𝑣 , respectively.

4.2.1 Multimodal Embedding Encoding. Existing works on
multimodal recommendation [12, 17, 24] either leverage a combi-
nation of individual vision encoder and text encoder or adopt a

multimodal encoder like BEiT3 [42] to transform the original mul-
timodal data into multimodal embeddings. However, there are two
limitations of these methods. First, embeddings from the individual
vision encoder and text encoder are not in the same representa-
tional space, which requires additional cost of alignment and even
leads to semantic loss [48]. Second, most existing multimodal en-
coders like CLIP [34] have limited capability of processing long
and complex texts, which can not meet the demand of handling the
textual information of items like title, descriptions, and review.

Therefore, we adopt LLM2CLIP [52] as the multimodal encoder
which enhances the original CLIP model by replacing the text
encoder with a more powerful LLM like Llama3-8B. Specifically,
LLM2CLIP takes the multimodal attribute of items as input and
outputs the textual and visual embedding 𝑬𝑡 ∈ R𝐷𝑡×|I | and 𝑬𝑣 ∈
R𝐷𝑣×|I | , where 𝐷𝑡 and 𝐷𝑣 denotes the embedding size of textual
and visual embedding, respectively. Meanwhile, a traditional SRS
like SASRec [5] is trained on collaborative data (i.e., item ID only)
and its embedding table 𝑬𝑐 ∈ R𝐷𝑐×|I | is extracted where 𝐷𝑐 is the
collaborative embedding size.

4.2.2 Multimodal EmbeddingQuantization. Existing works
on using semantic IDs for recommendation suffer from two draw-
backs. First, as shown in Eq. 4, they simply adoptmean squared error
(MSE) as the reconstruction loss, which does not explicitly preserve
the information of distance distribution. This is because minimiz-
ing the MSE between the decoded quantized embedding and the
original embedding is equivalent to minimizing their distance in
Euclidean space. Second, existing methods [35, 66] usually use the
semantic IDs of only textual embedding to represent each item and
fine-tune the corresponding embeddings on the downstream task,
which can not capture the distinction across modalities.

To address them, we propose a multimodal Residual Quantized
Variational Autoencoder named MM-RQ-VAE and its model archi-
tecture is shown in Fig. 2. Specifically, in each modality 𝑗 ∈ {𝑐, 𝑡, 𝑣},
the original embedding 𝒔 𝑗 ∈ 𝑬 𝑗 is encoded into semantic embedding
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𝒛 𝑗 , then the semantic IDs {𝑆𝐼𝐷1
𝑗
, . . . , 𝑆𝐼𝐷𝐿

𝑗
}, the quantized embed-

ding 𝒛̂ 𝑗 , and the decoded quantized embedding 𝒔 𝑗 are generated
through 𝐿-level codebook.

First and foremost, to explicitly improve the ability of the quan-
tized embedding 𝒛̂ 𝑗 to preserve the information in the original
embedding 𝒔 𝑗 , we propose to minimize the maximummean discrep-
ancy (MMD) between 𝒔 𝑗 and 𝒔 𝑗 as the reconstruction loss. Specifi-
cally, MMD [28, 36] measures the distance between any probability
distribution 𝑃 and 𝑄 which is defined as

MMD𝐾 (𝑃,𝑄) ≜ ∥𝝁𝑃 − 𝝁𝑄 ∥H𝐾
(10)

where 𝑘 (·, ·) is a symmetric positive-definite kernel with its unique
reproducing kernel Hilbert spaceH𝐾 , 𝝁 represents the mean em-
bedding of distribution, and ∥ · ∥H𝐾

is the norm of H𝐾 . Notably,
the kernel mean of characteristic kernel can preserve all statistics
of the distribution [36]. We will validate the advantage of MMD
over MSE in the subsequent analytical experiments in Sec. 5.4.

Second, to grasp inter-modality connection, we propose to align
the quantized collaborative embedding 𝒛̂𝑐 with quantized textual
and visual embedding 𝒛̂𝑡 and 𝒛̂𝑣 via contrastive objective like Info_NCE
loss. Notably, MM-RQ-VAE does not need to align the visual and
textual modality because LLMCLIP has already mapped the visual
and textual information into the same embedding space. Overall,
the trade-off between the reconstruction and alignment loss enables
the quantized embedding to simultaneously learn the intra-modal
and inter-modal correlations of multimodal embeddings.

The overall loss function of MM-RQ-VAE is

LMM-RQ-VAE = LRecon + 𝛽 · LAlign + 𝛾 ·
∑︁

𝑗∈{𝑐,𝑡,𝑣}
LRQ-VAE (11)

LRecon =
∑︁
𝑏⊂I

∑︁
𝑗∈{𝑐,𝑡,𝑣}

MMD2
𝐾

(
SG(𝒔𝑏𝑗 ), 𝒔

𝑏
𝑗

)
(12)

LAlign = L𝑐−𝑡 + L𝑐−𝑣 (13)

L𝑐−𝑡 = − 1
|I |

| I |∑︁
𝑖=1

log
exp

(
⟨𝒛̂𝑖𝑐 , 𝒛̂𝑖𝑡 ⟩/𝜖

)
exp

(
⟨𝒛̂𝑖𝑐 , 𝒛̂𝑖𝑡 ⟩/𝜖

)
+∑

𝑖′≠𝑖 exp
(
⟨𝒛̂𝑖𝑐 , 𝒛̂𝑖

′
𝑡 ⟩/𝜖

)
(14)

L𝑐−𝑣 = − 1
|I |

| I |∑︁
𝑖=1

log
exp

(
⟨𝒛̂𝑖𝑐 , 𝒛̂𝑖𝑣⟩/𝜖

)
exp

(
⟨𝒛̂𝑖𝑐 , 𝒛̂𝑖𝑣⟩/𝜖

)
+∑

𝑖′≠𝑖 exp
(
⟨𝒛̂𝑖𝑐 , 𝒛̂𝑖

′
𝑣 ⟩/𝜖

)
(15)

where LRQ−VAE is equivalent to Eq. 5, ⟨·, ·⟩ denotes the similarity
metric like cosine, 𝑏 denotes a batch of samples, SG denotes stop
gradient operation, 𝛽 and 𝛾 are hyper-parameters, and 𝜖 is the
temperature coefficient [18, 21, 22, 25, 26, 54, 55, 57, 62].

4.3 Fine-tuning Stage
As mentioned in Sec. 3.2, existing methods tend to only leverage
the semantic IDs and discard the trained code embeddings, thus ne-
glecting the impact of catastrophic forgetting. To address this issue,
we propose to initialize the embeddings of semantic ID 𝑬

𝑆𝐼𝐷𝑙
𝑗
with

code embeddings 𝑪𝑬
𝑆𝐼𝐷𝑙

𝑗
from the trained MM-RQ-VAE, which

preserve abundant intra-modal information (i.e., distance between
behavioral and target item embedding).

The prompt template is provided in the code. Specifically, the
LLM input consists of ‘{Instruction}’ and ‘{Behavioral Item Se-
quence}’ in which ‘{Instruction}’ denotes the instruction to conduct
SR task while ‘{Behavioral Item Sequence}’ is formulated as

𝑓MLP (
[
𝑾𝑗 · (𝑿 · SG(𝑬 𝑗 )) + 𝑏 𝑗 ,

𝐿∑︁
𝑙=1

𝑬
𝑆𝐼𝐷𝑙

𝑗

]
), 𝑗 ∈ {𝑐, 𝑡, 𝑣} (16)

where𝑿 denotes the one-hot vector of the behavioral item sequence.
𝑾𝑗 and 𝑏 𝑗 denotes the weight and bias of linear projection of each
modality. The square bracket denotes the concatenation operation
and SG denotes the stop gradient operation. Generally, the linear
projection of the original embeddings and sum of embeddings of
semantic ID (i.e., quantized embeddings) of different modalities are
concatenated. Then it is fed into an MLP to convert the dimension
into 𝐷LLM, which denotes the dimension of token embeddings of
LLM. Afterward, the subsequent LLM acts as the SR model. Notably,
this input format of MME-SID is distinctive from that of all existing
methods as illustrated in Tab. 2. It has the advantage of simultane-
ously preserving distance information of the original embedding
and hierarchical structure of semantic IDs.

Meanwhile, existing SR models often ignore the fact that the
importance of different modalities varies for cold or warm items,
leading to suboptimal recommendation result. Therefore, we pro-
pose a multimodal frequency-aware fusion module to adaptively
fuse the score between LLM output and item embeddings in differ-
ent modalities. Specifically, the last hidden state of the LLM output
𝒐LLM is leveraged. Besides, the frequency of each item 𝑖 occurred
in the training set is recorded as 𝑞𝑖 . Given the observation that the
user-item interaction data usually follows a highly-skewed long-
tail distribution [33], the frequency 𝑞𝑖 is first transformed into the
feature 𝑞′

𝑖
and then normalized as 𝑞′′

𝑖
:

𝑞′𝑖 = log (𝑞𝑖 + 1)

𝑞′′𝑖 =
𝑞′
𝑖
−min (𝑞′

𝑖
)

max (𝑞′
𝑖
) −min (𝑞′

𝑖
) (17)

Next, an MLP 𝑔 takes 𝑞′′
𝑖
as the input feature and output the weight

of fusion {𝑤𝑥 ,𝑤𝑐 ,𝑤𝑡 ,𝑤𝑣} for each target item. Finally, the predic-
tion score 𝑦 for each target item is

𝑤𝑥 ⊙ (𝒐LLM · 𝑬⊤
𝑥 ) +

∑︁
𝑗

𝑤 𝑗 ⊙ (𝒐LLM · (𝑾𝑗 · (𝑿 · SG(𝑬 𝑗 )) + 𝑏 𝑗 )⊤)

(18)

where 𝑗 ∈ {𝑐, 𝑡, 𝑣}. ⊙ and · denotes hadamard product and dot
product. 𝑬𝑥 ∈ R𝐷LLM×|I | denotes a new embedding table for target
item aiming at relieving the potential collapse issue in the target
item embedding. We will justify its necessity in Sec. 5.3. Finally, the
BCE loss is calculated to update the LLM using 𝑦 and 𝑦. Notably,
only a small proportion (e.g., only about 0.19% in our experiments)
of all parameters are updated efficiently using LoRA.

4.4 Discussions
Our primary motivation is to address the embedding collapse and
catastrophic forgetting issues in LLM4SR and further enhance the
performance of LLM on the SR task. Most significantly, the proposed
solution MME-SID has the potential to subvert the common while



CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Yuhao Wang et al.

suboptimal practice on using semantic IDs in generative retrieval
or generative recommendation. It has the following advantages:
• MME-SID is able to generate a ranking list on the whole item set
and output the most relevant top-k items flexibly. By contrast,
existing methods like TIGER [35] can only retrieve the most
relevant item in an autoregressive manner (i.e., code by code).

• MME-SID does not need to tackle collision [35], an issue that
multiple items are mapped into the same sequence of semantic
IDs. This is because multimodal data can naturally discriminate
between different items. By contrast, existingmethods like TIGER
require extra cost of computation and storage to ensure that each
item is mapped into a unique sequence of semantic IDs.

• MME-SID achieves higher inference efficiency than existing
methods, e.g., TIGER. Suppose the token embedding dimension
of LLM is 𝐷LLM and there are 𝑁 behavioral items interacted
by a user. Each item is further encoded into a sequence of 𝐿
semantic IDs. Therefore, TIGER needs to take a 𝐷LLM × 𝑁 × 𝐿-
dimensional vector of {Behavioral Item Sequence} as input. By
contrast, MME-SID only takes a 𝐷LLM × 𝑁 -dimensional vector
as input because each item is efficiently represented as a less
collapsed, less forgetting, and more informative multimodal em-
bedding, thus improving inference efficiency.

5 Experiments
We conduct extensive experiments on three public datasets and
answer the following research questions:
• RQ1:What is the performance of the proposed MME-SID com-
pared with baseline methods?

• RQ2: Do multimodal embeddings and semantic IDs contribute
to alleviating embedding collapse?

• RQ3:What is the effect of MMD-based reconstruction loss?
• RQ4: Does using trained code embeddings for initialization miti-
gate catastrophic forgetting?

5.1 Experimental Settings
5.1.1 Datasets. We experiment on three categories of Amazon2
5-core dataset [31] including Beauty, Toys & Games, and Sports &
Outdoors, in which each user and item has at least 5 interactions.
Specifically, this dataset is crawled from Amazon, an e-commerce
platform. The task is to predict whether a user will give a rating
(ranging from 1 to 5) higher than 3 to the target item. The dataset
statistics are summarized in Tab. 1, in which the sparsity metric
denotes the proportion of negative samples with label 𝑦 = 0. Mean-
while, denote 𝑁 as the length of historical interactions of a user,
the (𝑁 − 1)-th and 𝑁 -th item are treated as the target item in the
training and test set, respectively.

5.1.2 Evaluation Metrics. To conduct evaluation, the top-k Hit
Ratio (HR@k) and top-k normalized Discounted Cumulative Gain
(nDCG@k) are adopted with k = 5, 10, and 20.

5.1.3 Baselines. We compare the proposed MME-SID with the
following representative baseline methods and their inputs are
formulated in Tab. 2. Notably, the first three methods only leverages
item ID, i.e., collaborative modality data while the last five baselines

2https://jmcauley.ucsd.edu/data/amazon/index_2014.html

Table 1: The statistics of three categories of Amazon dataset:
Beauty, Toys & Games, and Sports & Outdoors.

Category Users Items Interactions Sparsity

Beauty 22,332 12,086 198,215 99.93%
Toys & Games 19,121 11,757 165,221 99.93%

Sports & Outdoors 35,092 18,090 292,007 99.95%

Table 2: The formulation of {Behavioral Item Sequence} of
baseline methods. 𝑿 denotes one-hot vector of the historical
interaction. 𝑬 denotes embeddingmatrix.𝑾 and 𝑏 denote the
weight and bias of linear projection. 𝑆𝐼𝐷𝑙 denotes the seman-
tic ID at the 𝑙-th codebook where 𝑙 = 1, . . . , 𝐿. The subscript
𝑐, 𝑡 , and 𝑣 denote collaborative, textual, and visual modality.
The square bracket denotes the concatenation operation. SG
denotes stop gradient operation.

Method Input

SASRec 𝑿 · 𝑬𝑐
E4SRec 𝑾𝑐 · (𝑿 · SG(𝑬𝑐 ) ) + 𝑏𝑐
ME 𝑓MLP (

[
𝑾𝑐 · (𝑿 · SG(𝑬𝑐 ) ) + 𝑏𝑐 ,𝑿 · 𝑬 ′

𝑐

]
)

Concat
[
𝑾𝑗 · (𝑿 · SG(𝑬 𝑗 ) ) + 𝑏 𝑗

]
, 𝑗 ∈ {𝑐, 𝑡, 𝑣}

Concat&MLP 𝑓MLP (
[
𝑾𝑗 · (𝑿 · SG(𝑬 𝑗 ) ) + 𝑏 𝑗

]
), 𝑗 ∈ {𝑐, 𝑡, 𝑣}

CTRL-MM 𝑓MLP (
[
𝑾𝑗 · (𝑿 · SG(𝑬 𝑗 ) ) + 𝑏 𝑗

]
), 𝑗 ∈ {𝑐, 𝑡, 𝑣}

TIGER-MM
[
𝑆𝐼𝐷1

𝑗
, . . . , 𝑆𝐼𝐷𝐿

𝑗

]
, 𝑗 ∈ {𝑐, 𝑡, 𝑣}

MOTOR
[
𝑆𝐼𝐷1

𝑗
, . . . , 𝑆𝐼𝐷𝐿

𝑗

]
, 𝑗 ∈ {𝑡, 𝑣}

LETTER
[
𝑆𝐼𝐷1

𝑗
, . . . , 𝑆𝐼𝐷𝐿

𝑗

]
, 𝑗 ∈ {𝑡 }

take multimodal data as input. For a fair comparison, Llama3-8B-
instruct is adopted for all LLM-based methods and RQ-VAE is used
to generate semantic IDs.
• SASRec [5] represents the original SASRec model using self-
attention to model sequential pattern.

• E4SRec [10] adopts a linear projection of the pre-trained ID
embeddings to tackle the out-of-range geneartion problem.

• Multi Embedding (ME) is a baseline we propose, which takes
both the linear projection of pre-trained ID embedding 𝑬𝑐 and a
new set of randomly initialized ID embedding 𝑬 ′

𝑐 as input.
• Concat simply leverages a linear layer or MLP to map the pre-
trained collaborative embedding to LLM token embedding space,
then it is directly concatenated with token embedding. It is
adopted in existing works like CoLLM [59] and LLaRA [13].

• Concat&MLP is a typical method of multimodal fusion [12, 53].
Specifically, the concatenation of collaborative, textual, and visual
embedding of items is first fed into an MLP, whose output is then
passed into LLM.

• CTRL-MM is adapted from CTRL [9]. It has the same input as
Concat&MLP, while it explicitly aligns the collaborative embed-
ding with textual and visual embedding using InfoNCE as the
contrastive learning loss.

• TIGER-MM is a multimodal variant adapted from TIGER [35]. It
only utilizes the semantic IDs of collaborative, textual, and visual
embeddings to conduct generative retrieval. Specifically, it trains
an RQ-VAE to generate semantic IDs for the embeddings in each
modality separately.

• MOTOR [56] replaces the collaborative embedding with token
embeddings of vision and text features, then adopts token cross

https://jmcauley.ucsd.edu/data/amazon/index_2014.html
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Table 3: Overall performance comparison on Beauty, Toys & Games, and Sports & Outdoors dataset. Boldface denotes the
highest value while underline indicates the second best result. ‘Impr.’ indicates our improvement against the second best
baseline. ★ represents statistical significance with 𝑝-value < 0.05 in 𝑡-test compared with the best baseline.

Datasets Metric SASRec E4SRec ME Concat Concat&MLP CTRL-MM TIGER-MM MOTOR LETTER Ours-full Impr.

Beauty

HR@5 0.0368 0.0545 0.0567 0.0523 0.0581 0.0614 0.0471 0.0226 0.0415 0.0675★ 9.93%
HR@10 0.0578 0.0757 0.0787 0.0757 0.0830 0.0875 0.0668 0.0380 0.0654 0.0955★ 9.14%
HR@20 0.0903 0.1040 0.1046 0.1070 0.1177 0.1224 0.0945 0.0635 0.0833 0.1342★ 9.64%
nDCG@5 0.0243 0.0388 0.0402 0.0365 0.0404 0.0430 0.0329 0.0140 0.0262 0.0475★ 10.47%
nDCG@10 0.0310 0.0456 0.0473 0.0440 0.0484 0.0515 0.0393 0.0189 0.0351 0.0566★ 9.90%
nDCG@20 0.0392 0.0527 0.0538 0.0519 0.0571 0.0602 0.0463 0.0253 0.0408 0.0663★ 10.13%

Toys & Games

HR@5 0.0508 0.0593 0.0598 0.0620 0.0623 0.0618 0.0486 0.0168 0.0471 0.0653★ 4.82%
HR@10 0.0713 0.0802 0.0827 0.0846 0.0871 0.0850 0.0667 0.0310 0.0650 0.0909★ 4.36%
HR@20 0.1022 0.1064 0.1120 0.1114 0.1184 0.1179 0.0889 0.0528 0.0852 0.1223★ 3.29%
nDCG@5 0.0357 0.0433 0.0435 0.0452 0.0444 0.0429 0.0354 0.0104 0.0343 0.0472★ 4.42%
nDCG@10 0.0422 0.0501 0.0509 0.0525 0.0524 0.0503 0.0412 0.0150 0.0399 0.0555★ 5.71%
nDCG@20 0.0500 0.0566 0.0582 0.0592 0.0602 0.0586 0.0468 0.0204 0.0449 0.0634★ 5.32%

Sports & Outdoors

HR@5 0.0204 0.0316 0.0339 0.0287 0.0292 0.0270 0.0251 0.0154 0.0224 0.0371★ 9.44%
HR@10 0.0327 0.0456 0.0494 0.0431 0.0445 0.0424 0.0376 0.0253 0.0334 0.0541★ 9.51%
HR@20 0.0522 0.0650 0.0718 0.0658 0.0667 0.0652 0.0551 0.0426 0.0503 0.0778★ 8.36%
nDCG@5 0.0132 0.0218 0.0234 0.0191 0.0194 0.0181 0.0167 0.0100 0.0149 0.0253★ 8.12%
nDCG@10 0.0171 0.0263 0.0285 0.0237 0.0243 0.0230 0.0207 0.0131 0.0186 0.0308★ 8.07%
nDCG@20 0.0220 0.0312 0.0341 0.0294 0.0299 0.0287 0.0251 0.0174 0.0226 0.0367★ 7.62%

network for interaction. Besides, we obtain the semantic IDs of vi-
sual and textual embeddings and adopt SASRec as the traditional
downstream multimodal recommendation model.

• LETTER [43] adopts various regularization methods like diver-
sity to achieve better item tokenization. We implement LETTER
on TIGER as the backbone model of generative recommendation.

5.1.4 Implementation Details. For multimodal encoding, the
product title and image are leveraged and the dimension of em-
beddings are 𝐷𝑐 = 64 and 𝐷𝑡 = 𝐷𝑣 = 1280. Meanwhile, we adopt
Gaussian kernel as 𝑘 (𝒆, 𝒆′) = exp(− ∥𝒆−𝒆′ ∥2

2𝜎2 ) which is characteris-
tic. Besides, we adopt Llama3-8B-instruct (𝐷LLM = 4096) as recom-
mender for better capability of following instructions compared
with the original Llama3-8B. Besides, all experiments are conducted
on A100 GPUs and the results shown are averaged over 3 runs. De-
tailed experimental settings are provided in Appendix. B.

5.2 Overall Performance (RQ1)
To answer RQ1, we compare the performance of MME-SID with
different baseline methods in Sec. 5.1.3 and the overall performance
is shown in Tab. 3. Specifically, we have the following observations.

Generally, the performance of LLM-based methods are superior
to the methods adopting traditional SRS including SASRec and MO-
TOR, indicating the potential of LLM4SR. On the one hand, for the
single-modal methods, E4SRec consistently surpasses SASRec and
multi-embedding (ME) paradigm brings improvement on E4SRec
by maintaining a new collaborative embedding table of item. How-
ever, the enhancement on Beauty and Toys & Games dataset is not
significant and we speculate this is because ME only leverages data
in collaborative modality, which can not bring much additional
information gain. More analysis are conducted in Sec. 5.3.

On the other hand, for multimodal methods, we surprisingly find
that even if the multimodal data is introduced, the widely adopted
Concat, Concat&MLP, and CTRL-MM achieve worse performance
than E4SRec, meaning that these methods utilize multimodal data

(a) Performance on SR
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Figure 3: (a) Sequential recommendation performance where
the y-axis is nDCG@20. (b) Embedding collapse Measure-
ment. The x-axis is dimension index and y-axis is the loga-
rithm of singular value (normalized by the maximum value)
of embedding. They are both conducted on Beauty dataset.

in a suboptimal manner. Meanwhile, TIGER-MM, MOTOR, and
LETTER achieve the worst accuracy among the multimodal meth-
ods comparably, which challenges the common approach that only
utilizes semantic IDs to conduct generative retrieval [35, 40].

By contrast, our proposed MME-SID achieves significant im-
provement on all three datasets and consistently surpasses all base-
line methods, validating its efficacy. It beats the best performing
baseline by 10.47%, 4.42%, and 8.12% on nDCG@5 on the three
datasets. We will further investigate the reason for its superiority by
analyzing its ability to tackle embedding collapse and catastrophic
forgetting in the following sections.

5.3 Alleviating Embedding Collapse (RQ2)
To answer RQ2, we compare the following five methods: SASRec,
E4SRec, ME, SE-SID-MMD, and MME-SID. Specifically, SE-SID-
MMD takes 𝑓MLP (

[
𝑾𝑐 · (𝑿 · SG(𝑬𝑐 )) + 𝑏𝑐 ,

∑𝐿
𝑙=1 𝑬𝑆𝐼𝐷𝑙𝑐

]
) as input,

i.e., only the collaborative modal. Notably, the SR performance is
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Figure 4: Comparison of MMD andMSE as the reconstruction
loss on (a) sequential recommendation performance and (b)
embedding collapse on Beauty dataset.

evaluated by nDCG@k. Embedding collapse is measured by the
singular value of embedding table [4] in which a higher value
indicates a lower degree of collapse. The results on Beauty dataset
are shown in Fig. 3(a) and (b), in which ‘MME-SID’ and ‘MME-SID
target item’ denote the input behavioral item embedding defined
in Eq. 16 and target item embedding 𝑬𝑥 , respectively. It is clearly
seen that, first, SASRec and E4SRec perform the worst and their
4096-dimensional embedding matrices drastically collapse after the
64−th dimension since 𝐷𝑐 = 64. Second, our MME-SID obtains the
best SR performance and it has the lowest degree of collapse from
the 65-th to the last 4096-th dimension accounting for over 98% of
the dimensions of embedding matrix. It indicates that introducing
multimodal embeddings and semantic IDs effectively expanding the
valid embedding space, thus enhancing model capacity. Third, the
result on the target item of MME-SID shows that a new target item
embedding table is necessary in alleviating embedding collapse.

To empirically analyze the effect of nonlinear mappings on singu-
lar value of embedding matrix, we take the most common activation
function ReLU as an example and Llama3-8B-instruct as the LLM
backbone. Specifically, compared with the model variant without
ReLU, we found that 1) Embedding matrix rank is not significantly
improved. 2) Recommendation accuracy degrades. 3) Catastrophic
forgetting is still observed probably because the nonlinearity dis-
rupts distance information in the original embedding.

Result 1. Solely relying on the pre-trained low-dimensional col-
laborative embeddings in LLM4SR leads to embedding collapse.
By contrast, our proposed MME-SID alleviates this phenome-
non and achieves better performance by adopting multimodal
embeddings and semantic IDs.

5.4 MMD-based Reconstruction Loss (RQ3)
To answer RQ3, we compare two model variants named ‘SE-SID-
MMD’ and ‘SE-SID-MSE’. Specifically, SE-SID-MMD trains an RQ-
VAEwithMMD as the reconstruction loss while SE-SID-MSE adopts
an RQ-VAE with MSE reconstruction loss. Their performance of
SR on Beauty dataset is shown in Fig. 4(a), suggesting that SE-
SID-MMD performs better. Besides, similar to Sec. 3.2, to measure
the forgetting in the input embedding of SE-SID-MMD, we first
calculate the variable of Euclidean distance between each pair of
behavioral-target item collaborative embedding. Next its 𝜏 between
the distance variable from the pre-trained collaborative embedding
𝑬𝑐 is calculated with a value of 0.4436. It is larger than 𝜏 = 0.3714 of
SE-SID-MSE, indicating less forgetting. Meanwhile, referring to the
blue and violet line in Fig. 4(b), the input embedding of SE-SID-MSE

nDCG@5 nDCG@10 nDCG@20
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Figure 5: (a) Comparison of code embedding initialization
where the y-axis denotes nDCG@k. (b) Ablation study on
Beauty dataset where the y-axis denotes nDCG@20.

and SE-SID-MMD have comparable degree of collapse. Even if the
semantic ID embeddings of SE-SID-MMD has a lower degree of
collapse than that of SE-SID-MSE, the 𝑓MLP only leverages infor-
mation beneficial to SR. Therefore, it is more appropriate to ascribe
the superiority of SE-SID-MMD to the mitigation of forgetting.

Result 2. Compared with Mean Squared Error as the reconstruc-
tion loss, the Maximum Mean Discrepancy reconstruction loss
enables the quantized embedding to better preserve the informa-
tion ( i.e., the partial order of behavioral-target item embedding
distance), thus achieving better recommendation performance.

5.5 Embedding Initialization (RQ4)
To answer RQ4, we compare MME-SID with ‘MME-SID-random’
which randomly initializes the embeddings of semantic IDs. Fig. 5(a)
shows that MME-SID-random performs worse. Besides, we calcu-
late the Euclidean distance of each behavioral-target item collabo-
rative embedding after fine-tuning in MME-SID-random. Its 𝜏 be-
tween the distance variable of 𝑬𝑐 is 0.0508, indicating catastrophic
forgetting. By contrast, our MME-SID achieves 𝜏 = 0.2727 after
fine-tuning, which demonstrates a significant relief on forgetting.

Result 3. Simply discarding the pre-trained code embeddings and
randomly initialize them on the downstream tasks would lead
to catastrophic forgetting. By contrast, our proposed MME-SID
mitigates this phenomenon by initializing with the trained code
embeddings, thus preserving the distance information.

5.6 Ablation Study
We conduct ablation study on Beauty dataset and the results are
depicted in Fig. 5(b). Specifically, to demonstrate that the improve-
ment in the performance of MME-SID does not simply stem from
an increase in the number of input parameters, we experiment on
the modal variant ‘MME-random’, which has the same number of
parameters in input as our MME-SID. Specifically, it replaces the
quantized embedding with a new embedding table with randomly
initialization of each modality while it is inferior to MME-SID be-
cause it can not leverage the intra- and inter-modal correlation from
our proposed MM-RQ-VAE. Besides, we also experiment on the
single-modal model variant ‘SE-random’ whose input is only the
randomly initialized item ID embeddings. It has the same number
of input parameters as E4SRec but achieves a pretty worse perfor-
mance due to forgetting. Finally, we experiment on the model vari-
ant ‘w/o Fusion’ which removes the multimodal frequency-aware
fusion module. The performance decrease indicates the significance
of the multimodal frequency-aware fusion module.
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6 Related Work
We summarize the related works on semantic IDs, multimodal
recommendation, and large language model for recommendation.

6.1 Semantic IDs for Recommendation
Semantic IDs denotes a sequence of tokens to represent users or
items in recommendation. Existing works can be categorized into
two groups. First, generative models like LLMs use semantic IDs
to conduct recommendation or retrieval task in a generative man-
ner [35, 40, 43, 66]. For example, TIGER [35] proposes to use the
content information of item to generate sequence of semantic to-
kens, which are further adopted to train the transformer model
on the SR task. Nonetheless, they mainly discard the trained code
embeddings which are randomly initialize on the downstream tasks,
leading to catastrophic forgetting.

Besides, someworks treat semantic ID as auxiliary information to
enhance the performance of traditional RS [30, 56, 58]. QARM [30]
adopts both vector quantization and residual quantization to gener-
ate quantitative codes as new features of downstream recommenda-
tion model. However, their improvement achieved is usually limited
due to the constraints imposed by the traditional model structure.
By contrast, our proposed MME-SID unleashes the power of LLMs
by adopting multimodal embeddings and the trained quantized
embeddings, thus achieving significant improvement on SR.

6.2 LLM4Rec & Multimodal Recommendation
The early works on large language model for recommendation
(LLM4Rec) like TALLRec [2] merely formulate the recommenda-
tion task in the natural language format and tune the LLM. After-
ward, some works focus on leveraging additional data in differ-
ent modalities. For example, to integrate textual and collaborative
semantic, LC-Rec [66] first conduct item indexing and proposes
different semantic alignment tasks. Nevertheless, they suffer from
high inference latency of auto-regressive generation. By contrast,
our MME-SID only leverages multimodal embeddings of items and
directly calculate the score between output embedding and target
item embeddings, which leads to high efficiency.

7 Conclusion
In this paper, we first identify the embedding collapse and cata-
strophic forgetting issues in the existing works on large language
model for sequential recommendation. To tackle them, we propose
a novel MME-SID framework by leveraging both multimodal em-
beddings and semantic IDs whose embeddings are initialized with
the trained code embeddings. To better preserve distance informa-
tion and learn inter-modal connections, we propose a multimodal
Residual Quantized Variational Autoencoder (MM-RQ-VAE) using
maximum mean discrepancy as the reconstruction loss and a con-
trastive learning objective. Extensive experiments on three public
datasets of Amazon validate the efficacy of the proposed method.

A Pseudo-code
The procedure of MME-SID is shown in Alg. 1, which consists
of two stages: (1) Encoding stage including Multimodal Embed-
ding Encoding step (from Line 1 to 2) and Multimodal Embedding
Quantization step (from Line 3 to 10); (2) Fine-tuning Stage.

Algorithm 1: Procedure of MME-SID
Input: User setU; item set I; historical interaction

sequence {ℎ𝑢 }, target item 𝑥𝑢 , and true label 𝑦𝑢 ;
Output: A trained LLM as sequential recommender system.
Stage 1: Encoding

1 Obtain the collaborative embedding from a pre-trained
conventional sequential recommender system;

2 Obtain the textual and visual embedding using LLM2CLIP;
3 while not converge do
4 Sample a mini-batch data from I;
5 Calculate the reconstruction loss LRecon;
6 Calculate the alignment loss LAlign;
7 Calculate the RQ-VAE loss LRQ-VAE;
8 Take the gradient and update MM-RQ-VAE;
9 end

10 Obtain multimodal semantic IDs and code embeddings;
Stage 2: Fine-tuning

11 while not converge do
12 Sample a mini-batch data fromU;
13 Retrieve the multimodal embeddings and semantic IDs;
14 Obtain the last hidden state of LLM output;
15 Calculate the fusion weight of target item;
16 Calculate the prediction score of multimodal fusion;
17 Calculate the BCE loss;
18 Take the gradient and update LLM using LoRA;
19 end

Table 4: The hyper-parameter settings of experiments.

Dataset Beauty Toys & Games Sports & Outdoors

Training epochs 3 3 2
Learning rate 3e-4 2e-4 2e-4
Batch size 16 16 16
LoRA rank 8 8 8
LoRA alpha 16 16 16
LoRA dropout 0.05 0.05 0.05
Warm-up steps 100 100 200
Number of codes 256 256 300
Level of codebooks 4 4 4

B Experimental Settings
For the data processing, we remove the items lacking title or image
in the original dataset. For implementation, AdamW [29] optimizer
is adopted and the hyper-parameters are shown in Tab. 4. we set
𝛼 = 1, 𝛽 = 1e-3, and 𝛾 = 1. Besides, the target modules of LoRA
are [gate_proj, down_proj, up_proj]. Finally, only about 0.19% of
all parameters are updated in our experiments.
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